L

Initializing Studio...

Langtrain Logo
LangtrainDocs

Getting Started

  • Introduction
  • Quick Start
  • Installation

Fine-tuning

  • LoRA & QLoRA
  • Full Fine-tuning

API & SDK

  • REST API
  • Python SDK

Deployment

  • Cloud Deployment
  • Security

Resources

  • FAQ
  • Changelog

Security Overview

Comprehensive security guide for LangTrain deployments. Learn about enterprise-grade data protection, access control, audit logging, and compliance requirements for production AI systems.

SOC 2
GDPR
HIPAA
Zero Trust

Security Architecture

LangTrain implements a defense-in-depth security model with multiple layers of protection. Security is built into every component from the ground up, not added as an afterthought.
Core Security Principles:
  • •Zero Trust Architecture: Never trust, always verify
  • •Principle of Least Privilege: Minimal access rights
  • •Data Minimization: Collect and process only necessary data
  • •Security by Design: Security embedded in development lifecycle
  • •Continuous Monitoring: Real-time threat detection and response
Our security framework follows industry standards including NIST Cybersecurity Framework, ISO 27001, and CIS Controls.
1from langtrain.security import SecurityManager, EncryptionService
2from langtrain.compliance import ComplianceManager
3
4# Initialize comprehensive security manager
5security = SecurityManager(
6 # Encryption configuration
7 encryption_level="AES-256-GCM",
8 key_rotation_interval="30d",
9 key_management="HSM", # Hardware Security Module
10
11 # Audit and monitoring
12 audit_level="detailed",
13 real_time_monitoring=True,
14 anomaly_detection=True,
15
16 # Compliance settings
17 compliance_mode=["SOC2", "GDPR", "HIPAA"],
18 data_residency="EU", # Geographic data restrictions
19 retention_policy="7y", # Data retention period
20)
21
22# Configure field-level encryption
23encryption = EncryptionService(
24 encryption_scope="field", # Field-level vs full-disk
25 key_derivation="PBKDF2-SHA256",
26 secure_deletion=True, # Cryptographic erasure
27 format_preserving=True, # Maintain data format
28)
29
30# Enable advanced security monitoring
31security.enable_monitoring([
32 "unauthorized_access_attempts",
33 "data_access_patterns",
34 "privilege_escalation",
35 "data_exfiltration_detection",
36 "model_poisoning_attempts",
37 "adversarial_input_detection"
38])
39
40# Set up compliance reporting
41compliance = ComplianceManager()
42compliance.configure_reporting(
43 frameworks=["SOC2", "GDPR"],
44 schedule="monthly",
45 automated_evidence_collection=True
46)

Access Control & Authentication

LangTrain provides enterprise-grade access control with multi-layered authentication and fine-grained authorization. Our identity and access management (IAM) system supports integration with existing enterprise identity providers.
Authentication Methods:
  • •Multi-Factor Authentication (MFA): TOTP, SMS, biometrics
  • •Single Sign-On (SSO): SAML 2.0, OAuth 2.0, OpenID Connect
  • •API Key Management: Rotating keys with expiration policies
  • •Certificate-based Authentication: mTLS for service-to-service
Authorization Features:
  • •Role-Based Access Control (RBAC): Predefined and custom roles
  • •Attribute-Based Access Control (ABAC): Context-aware permissions
  • •Resource-level permissions: Fine-grained model and data access
  • •Time-based access: Temporary permissions with auto-expiry
1from langtrain.auth import AuthenticationManager, RoleManager
2from langtrain.iam import PolicyEngine
3
4# Configure authentication
5auth_manager = AuthenticationManager(
6 # Multi-factor authentication
7 mfa_required=True,
8 mfa_methods=["totp", "sms", "biometric"],
9
10 # SSO integration
11 sso_providers={
12 "okta": {
13 "saml_endpoint": "https://company.okta.com/saml",
14 "certificate_path": "/certs/okta.pem"
15 },
16 "azure_ad": {
17 "tenant_id": "your-tenant-id",
18 "client_id": "your-client-id"
19 }
20 },
21
22 # Session management
23 session_timeout="8h",
24 concurrent_sessions=1,
25 idle_timeout="30m"
26)
27
28# Define role-based permissions
29role_manager = RoleManager()
30
31# Create custom roles with granular permissions
32role_manager.create_role("ml_engineer", permissions=[
33 "models.train",
34 "models.evaluate",
35 "datasets.read",
36 "experiments.create"
37])
38
39role_manager.create_role("data_scientist", permissions=[
40 "models.train",
41 "models.deploy",
42 "datasets.read",
43 "datasets.create",
44 "experiments.manage"
45])
46
47role_manager.create_role("admin", permissions=["*"])
48
49# Configure attribute-based access control
50policy_engine = PolicyEngine()
51policy_engine.add_policy(
52 name="sensitive_data_access",
53 condition="user.clearance_level >= dataset.classification_level",
54 effect="allow"
55)
56
57policy_engine.add_policy(
58 name="geographic_restriction",
59 condition="user.location in dataset.allowed_regions",
60 effect="allow"
61)
62
63# API key management with rotation
64api_keys = auth_manager.create_api_key(
65 user_id="user123",
66 permissions=["models.inference"],
67 expiry_days=30,
68 auto_rotate=True,
69 rate_limit="1000/hour"
70)

Data Protection & Privacy

Protecting sensitive training data and model outputs is critical for AI systems. LangTrain implements multiple layers of data protection including encryption, anonymization, and differential privacy.
Data Protection Features:
  • •Encryption at Rest: AES-256 with customer-managed keys
  • •Encryption in Transit: TLS 1.3 with perfect forward secrecy
  • •Data Anonymization: PII detection and automatic redaction
  • •Differential Privacy: Statistical privacy for training data
  • •Secure Multi-party Computation: Collaborative training without data sharing
  • •Federated Learning: Train models without centralizing data
Privacy Controls:
  • •Data Lineage Tracking: Complete audit trail of data usage
  • •Right to be Forgotten: GDPR-compliant data deletion
  • •Consent Management: Granular consent tracking and enforcement
  • •Data Minimization: Automated identification of unnecessary data
1from langtrain.privacy import (
2 DataProtectionManager,
3 DifferentialPrivacy,
4 PIIDetector,
5 ConsentManager
6)
7
8# Initialize data protection
9data_protection = DataProtectionManager(
10 # Encryption settings
11 encryption_key_source="customer_managed",
12 key_rotation_schedule="90d",
13
14 # Privacy settings
15 differential_privacy=True,
16 privacy_budget=1.0,
17 noise_multiplier=1.1,
18
19 # Data handling
20 automatic_pii_redaction=True,
21 data_lineage_tracking=True,
22 secure_deletion=True
23)
24
25# Configure differential privacy for training
26dp = DifferentialPrivacy(
27 epsilon=1.0, # Privacy budget
28 delta=1e-5, # Failure probability
29 noise_mechanism="gaussian",
30 clipping_norm=1.0, # Gradient clipping
31 sampling_rate=0.01 # Batch sampling rate
32)
33
34# Train with differential privacy
35model = langtrain.train(
36 dataset=sensitive_dataset,
37 privacy_engine=dp,
38 max_grad_norm=1.0,
39 noise_multiplier=1.1
40)
41
42# PII detection and redaction
43pii_detector = PIIDetector(
44 detection_types=[
45 "email", "phone", "ssn", "credit_card",
46 "ip_address", "person_name", "address"
47 ],
48 confidence_threshold=0.95,
49 redaction_method="masking" # or "synthetic", "removal"
50)
51
52# Process data with automatic PII handling
53cleaned_data = pii_detector.process_dataset(
54 raw_dataset,
55 preserve_format=True,
56 audit_redactions=True
57)
58
59# Consent management for GDPR compliance
60consent_manager = ConsentManager()
61
62# Track user consent
63consent_manager.record_consent(
64 user_id="user123",
65 data_types=["training_data", "model_outputs"],
66 purposes=["model_improvement", "research"],
67 consent_date="2024-01-01",
68 expiry_date="2025-01-01"
69)
70
71# Enforce consent in data processing
72if consent_manager.has_valid_consent(user_id, "training_data"):
73 # Process user data
74 process_user_data(user_data)
75else:
76 # Handle lack of consent
77 handle_consent_required(user_id)

Threat Detection & Response

LangTrain includes advanced threat detection capabilities specifically designed for AI/ML systems. Our security operations center (SOC) monitors for both traditional cyber threats and AI-specific attacks.
AI-Specific Threat Detection:
  • •Model Poisoning: Detection of malicious training data
  • •Adversarial Attacks: Real-time detection of adversarial inputs
  • •Model Extraction: Protection against model theft attempts
  • •Data Poisoning: Identification of corrupted datasets
  • •Backdoor Detection: Scanning for hidden triggers in models
Traditional Security Monitoring:
  • •Intrusion Detection: Network and host-based monitoring
  • •Behavioral Analytics: User and entity behavior analysis
  • •Threat Intelligence: Integration with external threat feeds
  • •Automated Response: Incident response automation
1from langtrain.security import (
2 ThreatDetector,
3 IncidentResponse,
4 SecurityMonitor,
5 AdversarialDefense
6)
7
8# Configure comprehensive threat detection
9threat_detector = ThreatDetector(
10 # AI-specific threats
11 model_poisoning_detection=True,
12 adversarial_input_detection=True,
13 data_drift_monitoring=True,
14 backdoor_scanning=True,
15
16 # Traditional security threats
17 intrusion_detection=True,
18 behavioral_analytics=True,
19 threat_intelligence_feeds=[
20 "mitre_attack", "cve_database", "ai_threat_db"
21 ],
22
23 # Detection sensitivity
24 sensitivity_level="high",
25 false_positive_threshold=0.05
26)
27
28# Set up adversarial defense
29adversarial_defense = AdversarialDefense(
30 detection_methods=[
31 "input_transformation",
32 "statistical_analysis",
33 "ensemble_voting"
34 ],
35 response_actions=[
36 "reject_input",
37 "sanitize_input",
38 "flag_for_review"
39 ]
40)
41
42# Configure automated incident response
43incident_response = IncidentResponse()
44
45# Define response playbooks
46incident_response.create_playbook(
47 name="model_poisoning_detected",
48 triggers=["high_confidence_poisoning_alert"],
49 actions=[
50 "isolate_affected_models",
51 "revert_to_previous_checkpoint",
52 "notify_security_team",
53 "initiate_forensic_analysis"
54 ],
55 escalation_time="15m"
56)
57
58incident_response.create_playbook(
59 name="adversarial_attack_detected",
60 triggers=["adversarial_input_confirmed"],
61 actions=[
62 "block_source_ip",
63 "enhance_input_filtering",
64 "collect_attack_samples",
65 "update_defense_models"
66 ]
67)
68
69# Real-time security monitoring
70monitor = SecurityMonitor()
71monitor.start_monitoring(
72 components=["api_endpoints", "training_jobs", "data_pipelines"],
73 metrics=["request_patterns", "resource_usage", "error_rates"],
74 alert_thresholds={
75 "failed_auth_attempts": 5,
76 "unusual_data_access": 10,
77 "model_performance_drop": 0.1
78 }
79)
80
81# Integration with SIEM systems
82monitor.configure_siem_integration(
83 siem_type="splunk",
84 endpoint="https://siem.company.com/api",
85 format="cef",
86 real_time_streaming=True
87)

Compliance & Governance

LangTrain provides comprehensive compliance management tools to help organizations meet regulatory requirements and internal governance standards. Our platform supports automated compliance monitoring and reporting.
Supported Frameworks:
  • •SOC 2 Type II: Controls for security, availability, processing integrity
  • •GDPR: EU data protection regulation compliance
  • •HIPAA: Healthcare data protection (with BAA support)
  • •ISO 27001: Information security management systems
  • •PCI DSS: Payment card industry data security
  • •FedRAMP: US federal cloud security requirements
Governance Features:
  • •Policy Management: Centralized policy definition and enforcement
  • •Risk Assessment: Automated security risk evaluation
  • •Compliance Dashboards: Real-time compliance status monitoring
  • •Audit Trail: Immutable logs for compliance audits
  • •Automated Reporting: Scheduled compliance reports
1from langtrain.compliance import (
2 ComplianceFramework,
3 PolicyManager,
4 RiskAssessment,
5 AuditLogger
6)
7
8# Configure compliance frameworks
9compliance = ComplianceFramework(
10 active_frameworks=["SOC2", "GDPR", "HIPAA"],
11
12 # SOC 2 configuration
13 soc2_controls={
14 "CC6.1": "logical_access_controls",
15 "CC6.2": "authentication_credentials",
16 "CC6.3": "authorized_access_changes",
17 "CC7.1": "data_transmission_controls"
18 },
19
20 # GDPR configuration
21 gdpr_settings={
22 "data_protection_officer": "dpo@company.com",
23 "lawful_basis_tracking": True,
24 "breach_notification_time": "72h",
25 "consent_management": True
26 },
27
28 # HIPAA configuration
29 hipaa_settings={
30 "covered_entity": True,
31 "business_associate_agreement": True,
32 "minimum_necessary_standard": True,
33 "breach_threshold": 500
34 }
35)
36
37# Define and enforce policies
38policy_manager = PolicyManager()
39
40# Data handling policies
41policy_manager.create_policy(
42 name="data_retention",
43 description="Automatic data deletion after retention period",
44 rules=[
45 "training_data.max_age = 7_years",
46 "logs.max_age = 3_years",
47 "backups.max_age = 10_years"
48 ],
49 enforcement="automatic"
50)
51
52policy_manager.create_policy(
53 name="cross_border_transfer",
54 description="Restrictions on international data transfers",
55 rules=[
56 "pii_data.allowed_regions = ['EU', 'US']",
57 "transfer_mechanism = 'standard_contractual_clauses'",
58 "adequacy_decision_required = True"
59 ],
60 enforcement="blocking"
61)
62
63# Automated risk assessment
64risk_assessment = RiskAssessment()
65risk_report = risk_assessment.evaluate(
66 scope="full_platform",
67 frameworks=["NIST", "ISO27001"],
68 assessment_type="quarterly",
69
70 risk_categories=[
71 "data_security",
72 "access_control",
73 "business_continuity",
74 "vendor_management",
75 "incident_response"
76 ]
77)
78
79# Continuous compliance monitoring
80compliance.start_monitoring(
81 check_frequency="daily",
82 automated_remediation=True,
83
84 # Compliance metrics
85 track_metrics=[
86 "access_review_completion",
87 "security_training_completion",
88 "vulnerability_remediation_time",
89 "incident_response_time",
90 "backup_success_rate"
91 ]
92)
93
94# Generate compliance reports
95compliance_report = compliance.generate_report(
96 framework="SOC2",
97 period="2024-Q1",
98 include_evidence=True,
99 format="pdf",
100
101 # Custom attestations
102 attestations={
103 "management_review": "2024-01-15",
104 "independent_audit": "2024-02-01",
105 "penetration_test": "2024-01-20"
106 }
107)
108
109# Audit logging for compliance
110audit_logger = AuditLogger(
111 immutable_storage=True,
112 encryption=True,
113 digital_signatures=True,
114 retention_period="10y"
115)
116
117# Log all security-relevant events
118audit_logger.log_event(
119 event_type="user_authentication",
120 user_id="admin@company.com",
121 timestamp="2024-01-15T10:30:00Z",
122 result="success",
123 additional_data={
124 "ip_address": "10.0.1.100",
125 "user_agent": "Mozilla/5.0...",
126 "mfa_method": "totp"
127 }
128)

Security Best Practices

Follow these security best practices to maximize the protection of your LangTrain deployment. These recommendations are based on industry standards and real-world deployment experience.
Infrastructure Security:
  • •Use private networks and VPCs for all components
  • •Implement network segmentation and micro-segmentation
  • •Enable Web Application Firewall (WAF) protection
  • •Use container security scanning and runtime protection
  • •Implement secrets management with rotation
Operational Security:
  • •Regular security assessments and penetration testing
  • •Incident response plan testing and updates
  • •Security awareness training for all team members
  • •Vulnerability management and patch management
  • •Backup and disaster recovery testing
1# Security hardening checklist for production deployment
2
3# 1. Network Security
4network_config = {
5 "vpc_isolation": True,
6 "private_subnets_only": True,
7 "network_acls": "restrictive",
8 "security_groups": "least_privilege",
9 "waf_enabled": True,
10 "ddos_protection": True
11}
12
13# 2. Infrastructure hardening
14infrastructure_security = {
15 "container_scanning": True,
16 "runtime_protection": True,
17 "host_intrusion_detection": True,
18 "file_integrity_monitoring": True,
19 "privileged_container_restrictions": True
20}
21
22# 3. Secrets management
23from langtrain.security import SecretsManager
24
25secrets = SecretsManager(
26 provider="aws_secrets_manager", # or "vault", "azure_kv"
27 encryption="AES-256",
28 rotation_schedule="30d",
29 access_logging=True
30)
31
32# Store sensitive configuration
33secrets.store_secret(
34 name="database_password",
35 value="super_secure_password",
36 tags={"environment": "production", "service": "database"}
37)
38
39# 4. Security monitoring setup
40monitoring_config = {
41 "log_aggregation": "centralized",
42 "siem_integration": True,
43 "real_time_alerts": True,
44 "behavioral_analytics": True,
45 "threat_hunting": "automated"
46}
47
48# 5. Backup and disaster recovery
49backup_config = {
50 "backup_frequency": "4h",
51 "backup_encryption": True,
52 "cross_region_replication": True,
53 "point_in_time_recovery": True,
54 "disaster_recovery_testing": "monthly"
55}
56
57# 6. Regular security tasks (automation recommended)
58security_tasks = [
59 "vulnerability_scanning_weekly",
60 "access_review_monthly",
61 "penetration_testing_quarterly",
62 "security_training_quarterly",
63 "incident_response_drill_biannual",
64 "compliance_audit_annual"
65]
66
67# 7. Deployment security checklist
68deployment_checklist = {
69 "secure_defaults": True,
70 "unnecessary_services_disabled": True,
71 "debug_mode_disabled": True,
72 "error_messages_sanitized": True,
73 "security_headers_enabled": True,
74 "rate_limiting_configured": True,
75 "input_validation_comprehensive": True,
76 "output_encoding_enabled": True
77}
Previous
Cloud Deployment
Next
FAQ